Quick start

This a quick overview of the module.


First install python-rapidjson:

$ pip install python-rapidjson

If possible this installs a binary wheel, containing the latest version of the package already compiled for your system. Otherwise it will download a source distribution and will try to compile it: as the module is written in C++, in this case you most probably will need to install a minimal C++ compiler toolchain on your system.

Alternatively it is also possible to install it using Conda.

Basic examples

python-rapidjson tries to be compatible with the standard library json.dumps() and json.loads() functions (but see the incompatibilities).

Basic usage looks like this:

>>> from pprint import pprint
>>> from rapidjson import dumps, loads
>>> data = {'foo': 100, 'bar': 'baz'}
>>> dumps(data, sort_keys=True) # for doctest
>>> pprint(loads('{"bar":"baz","foo":100}'))
{'bar': 'baz', 'foo': 100}

All JSON data types are supported using their native Python counterparts:

>>> int_number = 42
>>> float_number = 1.4142
>>> string = "√2 ≅ 1.4142"
>>> false = False
>>> true = True
>>> null = None
>>> array = [int_number, float_number, string, false, true, null]
>>> an_object = {'int': int_number, 'float': float_number,
...              'string': string,
...              'true': true, 'false': false,
...              'array': array }
>>> pprint(loads(dumps({'object': an_object})))
{'object': {'array': [42, 1.4142, '√2 ≅ 1.4142', False, True, None],
            'false': False,
            'float': 1.4142,
            'int': 42,
            'string': '√2 ≅ 1.4142',
            'true': True}}

Python’s lists, tuples and iterators get serialized as JSON arrays:

>>> names_t = ('Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat')
>>> names_l = list(names_t)
>>> names_i = iter(names_l)
>>> def names_g():
...     for name in names_t:
...         yield name
>>> dumps(names_t) == dumps(names_l) == dumps(names_i) == dumps(names_g())

Values can also be bytes or bytearray instances, which are assumed to contain proper UTF-8-encoded strings:

>>> clef = "\N{MUSICAL SYMBOL G CLEF}"
>>> bytes_utf8 = clef.encode('utf-8')
>>> bytearray = bytearray(bytes_utf8)
>>> dumps(clef) == dumps(bytes_utf8) == dumps(bytearray) == '"\\uD834\\uDD1E"'

python-rapidjson can optionally handle also a few other commonly used data types:

>>> import datetime, decimal, uuid
>>> from rapidjson import DM_ISO8601, UM_CANONICAL, NM_DECIMAL
>>> some_day = datetime.date(2016, 8, 28)
>>> some_timestamp = datetime.datetime(2016, 8, 28, 13, 14, 15)
>>> dumps({'a date': some_day, 'a timestamp': some_timestamp})
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: datetime.datetime(…) is not JSON serializable
>>> dumps({'a date': some_day, 'a timestamp': some_timestamp},
...       datetime_mode=DM_ISO8601,
...       sort_keys=True) # for doctests
'{"a date":"2016-08-28","a timestamp":"2016-08-28T13:14:15"}'
>>> as_json = _
>>> pprint(loads(as_json))
{'a date': '2016-08-28', 'a timestamp': '2016-08-28T13:14:15'}
>>> pprint(loads(as_json, datetime_mode=DM_ISO8601))
{'a date': datetime.date(2016, 8, 28),
 'a timestamp': datetime.datetime(2016, 8, 28, 13, 14, 15)}
>>> some_uuid = uuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')
>>> dumps(some_uuid)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: UUID(…) is not JSON serializable
>>> dumps(some_uuid, uuid_mode=UM_CANONICAL)
>>> as_json = _
>>> loads(as_json)
>>> loads(as_json, uuid_mode=UM_CANONICAL)
>>> pi = decimal.Decimal('3.1415926535897932384626433832795028841971')
>>> dumps(pi)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Decimal(…) is not JSON serializable
>>> dumps(pi, number_mode=NM_DECIMAL)
>>> as_json = _
>>> loads(as_json)
>>> type(loads(as_json))
<class 'float'>
>>> loads(as_json, number_mode=NM_DECIMAL)

The module exposes also a stream interface:

>>> from io import StringIO
>>> from rapidjson import dump, load
>>> stream = StringIO()
>>> dump(data, stream)
>>> stream.seek(0)
>>> load(stream) == data


Here are things in the standard json library that we have decided not to support:

separators argument

This is mostly used for pretty printing and not supported by RapidJSON so it isn’t a high priority. We do support indent kwarg that would get you nice looking JSON anyways.

Coercing keys when dumping

json will stringify a True dictionary key as "true" if you dump it out but when you load it back in it’ll still be a string. We want the dump and load to return the exact same objects so we have decided not to do this coercion by default; you can however use MM_COERCE_KEYS_TO_STRINGS or a default function to mimic that.

Arbitrary encodings

json.loads() accepts an encoding kwarg determining the encoding of its input, when that is a bytes or bytearray instance. Although RapidJSON is able to cope with several different encodings, we currently supports only the recommended one, UTF-8.

cls argument to loads() and dumps()

The json top level functions accept a cls parameter that allows to specify custom encoder/decoder class. If you must use that approach, that is you have to use the standard json top level functions but want to use RapidJSON functionalities, the following snippet shows a reasonably simple way to do that:

>>> import datetime
>>> import json
>>> import rapidjson
>>> class Encoder:
...     def __init__(self, *args, **kwargs):
...         # Filter/adapt JSON arguments to RapidJSON ones
...         rjkwargs = {'datetime_mode': rapidjson.DM_ISO8601}
...         encoder = rapidjson.Encoder(**rjkwargs)
...         self.encode = encoder.__call__
>>> json.dumps([1,2,datetime.date(2020, 12, 8)], cls=Encoder)
>>> class Decoder:
...     def __init__(self, *args, **kwargs):
...         # Filter/adapt JSON arguments to RapidJSON ones
...         rjkwargs = {'datetime_mode': rapidjson.DM_ISO8601}
...         encoder = rapidjson.Decoder(**rjkwargs)
...         self.decode = encoder.__call__
>>> json.loads('[1,2,"2020-12-08"]', cls=Decoder)
[1, 2, datetime.date(2020, 12, 8)]
object_pairs_hook argument

json decoding functions accept an object_pairs_hook kwarg, a variant of object_hook that selects a different way to translate JSON objects into Python dictionaries by first collecting their content into a sequence of key-value pairs and eventually passing that sequence to the hook function. That behaviour may be easily simulated:

>>> def loads(s, object_pairs_hook=None):
...     if object_pairs_hook is None:
...         d = rapidjson.Decoder()
...     else:
...         class KWPairsDecoder(rapidjson.Decoder):
...             def start_object(self):
...                 return []
...             def end_object(self, pairs):
...                 return object_pairs_hook(pairs)
...         d = KWPairsDecoder()
...     return d(s)
>>> loads('{"foo": "bar"}', lambda pairs: ','.join(f'{k}={v}' for k, v in pairs))